电磁干扰的三要素是干扰源、干扰传输途径、干扰接收器。EMC就围绕这些问题进行研究。最基本的干扰抑制技术是屏蔽、滤波、接地。它们主要用来切断干扰的传输途径。广义的电磁兼容控制技术包括抑制干扰源的发射和提高干扰接收器的敏感度,但已延伸到其他学科领域。
电磁兼容性是指电气和电子系统及设备在特定的电磁环境中,在规定的安全界限内以设定的等级运行时,不会由于外界的电磁干扰而引起损坏或导致性能恶化到不可挽救的程度,同时它们本身产生的电磁辐射不大于检定的极限电平,不影响其他电子设备或系统的正常运行,以达到设备与设备、系统与系统之间互不干扰、共同可靠地工作的目的。
电磁兼容中磁场耦合是因为传导电流(conduction current)的电生磁效应而产生。我们需要信号从设计路径流通,但是外部环境所导致的寄生电感对电流提供了一个比原来路径较低阻抗的路径。
在复杂的电磁环境中,每台电子、电气产品除了本身要能抗住一定的外来电磁干扰正常工作以外,还不能产生对该电磁环境中的其它电子、电气产品所不能承受的电磁干扰。或者说,既要满足有关标准规定的电磁敏感度极限值要求,又要满足其电磁发射极限值要求,这就是电子、电气产品电磁兼容性应当解决的问题,也是电子、电气产品通过电磁兼容性认证的必要条件。
电子系统中电磁骚扰源主要有:1高压隔离开关和断路器操作2雷击及系统短路3局部放电4二次系统中的开关操作5负荷变化和运行故障时电网中产生的电压暂降、中断、不平衡、谐波和频率变化等骚扰6发电机和变压器产生的工频及谐波电场和磁场7输电线路在其周围产生的电场和磁场8自动化设备,无线设备产生的高频传导骚扰哥辐射骚扰9自然现象,如雷击、静电放电、地磁干扰和核电磁脉冲。
家用电器电磁骚扰对电磁环境的影响包括静电放电、脉冲群、雷击浪涌、电磁骚扰等。近年来,随着家用电器品种越来越多,生产规模不断扩大;同时,进口产品也充斥市场。另一方面,随着微电子控制技术的发展,电子家电产品大量涌现。由此而产生的电磁骚扰在对其它家用电器或电子设备的正常使用和可靠性产生影响和危害的同时,也对人们的身体健康造成了直接影响。
随着电力和电子技术的发展,开关电源模块逐渐取代了传统的整流电源,具有相对体积小、效率高、工作可靠等优点。然而,由于开关电源工作频率高,内部会产生高电流。电压变化率(即高dv/dt和di/df),导致开关电源模块产生强电磁干扰,并通过传导。辐射和串扰等耦合方式影响其电路和其他电子系统的正常工作。当然,它本身也会受到其他电子设备电磁干扰的影响。
EMC指的是设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。EMC是评价产品质量的一个重要指标。EMC测试包括:(1)EMI(Electro-Magnetic Interference)---电磁骚扰测试此测试之目的为:检测电器产品所产生的电磁辐射对人体、公共电网以及其他正常工作之电器产品的影响。
经过对直接雷击、传导雷击和感应雷击三种主要形式的深入研究,人们建立了雷电感应和高压反击的理论,明确了金属线上高压雷电波的传输规律。在此基础上,发明了间隙串联保险丝避雷器、无间隙氧化锌避雷器、瞬态过电压浪涌抑制器(TVS)。这些技术在电力和其他金属传输线路上的综合应用,有效地防止了传导雷击对人和环境的灾难性破坏。
屏蔽室的屏蔽效能就是模拟干扰源置于屏蔽体外时,屏蔽体安放前后的电场强度、磁场强度或功率比值。屏蔽室搭建得好坏,取决于屏蔽效能的高低。那么屏蔽室的屏蔽效能是怎样表示的?屏蔽效能降低的原因又是什么?下面就一起来看看吧。
PCB布线是ESD防护的一个关键要素,合理的PCB设计可以减少故障检查及返工所带来的不必要成本。在PCB设计中,由于采用了瞬态电压抑止器(TVS)二极管来抑止因ESD放电产生的直接电荷注入,因此PCB设计中更重要的是克服放电电流产生的电磁干扰(EMI)电磁场效应。本文将提供可以优化ESD防护的PCB设计准则。
静电放电(ESD)是一种自然现象,经验表明,人在合成纤维的地毯上行走时,通过鞋子与地毯的摩擦,只要行走几步,人体上积累的电荷就可以达到10-6库仑以上(这取决于鞋子与地毯之间的电阻),在这样一个"系统"里(人/地毯/大地)的平均电容约为几十至上百pF,可能产生的电压要达到15kV。